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 CHAPTER 5 

LATERAL LOADING OF A SHAFT IN LAYERED SOIL

USING THE STRAIN WEDGE MODEL

5.1 INTRODUCTION

The strain wedge (SW) model is an approach that has been developed to predict the response of a

flexible pile under lateral loading (Norris 1986, Ashour et al. 1996 and Ashour et al. 1998).  The

main concept associated with the SW model is that traditional one-dimensional Beam on Elastic

Foundation (BEF) pile response parameters can be characterized in terms of three-dimensional

soil-pile interaction behavior.  The SW model was initially established to analyze a free-head

pile embedded in one type of uniform soil (sand or clay).  However, the SW model has been

improved and modified through additional research to accommodate a laterally loaded pile

embedded in multiple soil layers (sand and clay).  The SW model has been further modified to

include the effect of pile head conditions on soil-pile behavior.  The main objective behind the

development of the SW model is to solve the BEF problem of a laterally loaded pile based on the

envisioned soil-pile interaction and its dependence on both soil and pile properties.

The problem of a laterally loaded pile in layered soil has been solved by Reese (1977) as a BEF

based on modeling the soil response by p-y curves.  However, as mentioned by Reese (1983), the

nonlinear p-y curve employed does not account for soil continuity and pile properties such as

pile stiffness, pile cross-section shape and pile head conditions.

The SW model was initially developed to assess the response of a laterally loaded long (slender)

pile (diameter < 3 ft).  As a result, the effect of the vertical side shear (Vv) along the side of a

large diameter shaft should be integrated in the SW model analysis to account for such a

significant parameter in the analysis of large diameter shafts (Fig. 5-1).  In addition, the

characterization of the intermediate and short shafts should be incorporated in the SW model

analysis to cover broader aspects of the shaft/pile analysis.
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5.2 THE THEORETICAL BASIS OF STRAIN WEDGE MODEL

CHARACTERIZATION

The SW model parameters are related to an envisioned three-dimensional passive wedge of soil

developing in front of the pile.  The basic purpose of the SW model is to relate stress-strain-

strength behavior of the soil in the wedge to one-dimensional BEF parameters.  The SW model

is, therefore, able to provide a theoretical link between the more complex three-dimensional soil-

pile interaction and the simpler one-dimensional BEF characterization. The previously noted

correlation between the SW model response and BEF characterization reflects the following

interdependence:

• the horizontal soil strain (ε) in the developing passive wedge in front of the pile to the

deflection pattern (y versus depth, x) of the pile;

• the horizontal soil stress change (∆σh) in the developing passive wedge to the soil-pile

reaction (p) associated with BEF behavior; and

• the nonlinear variation in the Young's modulus (E = ∆σh/ε) of the soil to the nonlinear

variation in the modulus of soil subgrade reaction (Es = p/y) associated with BEF

characterization.

The analytical relations presented above reflect soil-pile interaction response characterized by

the SW model that will be illustrated later.  The reason for linking the SW model to BEF analysis

is to allow the appropriate selection of BEF parameters to solve the following fourth-order

ordinary differential equation to proceed.

where MR is the resisting bending moment per unit length induced along the shaft length (x) due

to the vertical side shear (VV) (Fig. 5-1).  The closed form solution of the basic form of the above

equation has been obtained by Matlock and Reese (1961) for the case of uniform soil.  In order

to appreciate the SW model’s enhancement of BEF analysis, one should first consider the

governing analytical formulations related to the passive wedge in front of the shaft, the soil’s
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stress-strain and the vertical side shear (t-z curve) formulations, and the related soil-pile

interaction.

5.3 SOIL PASSIVE WEDGE CONFIGURATION

The SW model represents the mobilized passive wedge in front of the pile which is characterized

by base angles, ϕm and βm, the current passive wedge depth h, and the spread of the wedge fan

angle, ϕ m (the mobilized friction angle of soil).  The horizontal stress change at the passive

wedge face, ∆σh, and side shear, τ, act as shown in Fig. 5-2.  One of the main assumptions

associated with the SW model is that the deflection pattern of the pile is taken to be linear over

the controlling depth of the soil near the pile top resulting in a linearized deflection angle, δ, as

seen in Fig. 5-3.

The SW model makes the analysis simpler because forces (F1) on the opposite faces cancel, but

the real zone of stress is like the dashed outline shown in Fig. 5-4b which includes side shear

influence (ô) on the shape of the strained zone.  However, the ô perpendicular to the face of the

pile is still considered in the SW model analysis.  As seen in Fig. 5-4c, the horizontal equilibrium

in the SW wedge model is based on the concepts of the conventional triaxial test.  The soil at the

face of the passive wedge is represented by a soil sample in the conventional triaxial test where

voσ  (i.e. K = 1) and the horizontal stress change, Äóh, (from pile loading) are the confining and

deviatoric stresses in the triaxial test, respectively.

The relationship between the actual (closed form solution) and linearized deflection patterns of

long pile/shaft has been established by Norris (1986) (h/Xo = 0.69).  As seen in 5-5, the

relationship (h/Xo) between the actual and linearized deflection for the short shaft is equal to 1,

and varies for the intermediate shafts from 0.69 at (L/T = 4) to 1 at (L/T = 2).  As presented in

Chapter 2, L is the embedded length of the shaft and T is the initial relative shaft stiffness.

It should be noted that the idea of the change in the full passive wedge (mobilized passive wedge

at different levels of deflection) employed in the SW model has been shown experimentally by

Hughes and Goldsmith (1978) and previously established by Rowe (1956).
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Changes in the shape and depth of the upper passive wedge, along with changes in the state of

loading and shaft/pile deflection, occur with change in the uniform strain (ε) in the developing

passive wedge.  As seen in Fig. 5-6, two mobilized (tip to tip) passive wedges are developed in

soil in front of the short shaft.  Because of the shaft straight-line deflection pattern with a

deflection angle δ, the uniform soil strain (ε) will be the same in both (i.e. upper and lower)

passive wedges.

As shown in Figs. 5-5 and 5-6, the deflection pattern is no longer a straight line for the

intermediate shaft, and the lower passive wedge has a curved shape that is similar to the

deflection pattern.  Accordingly, the soil strain (εx) at depth x below the zero crossing will not be

uniform and will be evaluated in an iterative method based on the associated deflection at that

depth (Fig. 5-6c)

The lateral response of the short shaft is governed by both (upper and lower) developed passive

wedges (Fig. 5-6).  However, with the intermediate shaft, less soil strain (i.e. stress on soil)

develops in the lower passive soil wedge (the inverted wedge below the point of zero crossing)

compared to the upper one (Fig. 5-6).  The non-uniform soil strain (εx) in the lower passive soil

wedge (Fig. 5-6c) becomes much smaller compared to the strain in the upper soil wedge when

the shaft deflection approaches the deflection pattern of the long shaft.  Since the lateral

deflection of the long pile/shaft below the zero crossing is always very small, the associated soil

strain and developing passive wedge will be very small as well.  Consequently, the developing

upper passive soil wedge (and uniform strain therein) dominates the lateral response of the long

pile/shaft; hence the adopted name “strain wedge” (SW).

As seen in Figs. 5-3 and 5-6, the configuration of the wedge at any instant of load and,

therefore,base angle

mobilized friction angle, ϕm, and wedge depth, h, is given by the following equation:

or its complement

2
 - 45 = m

m
ϕ

Θ                                     (5-2)
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The width, BC , of the wedge face at any depth is

ϕβ mm     2 x) - h ( + D = BC tantan (5-4)

where x denotes the depth below the top of the studied passive wedge, and D symbolizes the

width of the pile cross-section. It should be noted that the SW model is based upon an effective

stress analysis of both sand and clay soils.  As a result, the mobilized fanning angle, ϕm, is not

zero in clay soil as assumed by Reese (1958, 1983).

The above equations are applied to the upper and lower passive wedges in the case of short and

intermediate shafts where x for any point on the lower passive wedge (Fig. 5-6c) is measured

downward from the zero crossing and replaces the term (h - x) in Eqn. 5-4.  Therefore,

)(/)/(
δ
δ

εδεε x
xx xy = = (5-5)

where ε and δ are the uniform soil strain and linearized shaft deflection angle of the upper

passive wedge, respectively.  yx and δx are the shaft deflection and secant deflection angle at

depth x below the zero crossing (Fig. 5-6c).

5.4 STRAIN WEDGE MODEL IN LAYERED SOIL

The SW model can handle the problem of multiple soil layers of different types.  The approach

employed, which is called the multi- sublayer technique, is based upon dividing the soil profile

and the loaded pile into sublayers and segments of constant thickness, respectively, as shown in

Fig. 5-7.  Each sublayer of soil is considered to behave as a uniform soil and have its own

properties according to the sublayer location and soil type.  In addition, the multi- sublayer

technique depends on the deflection pattern of the embedded pile being continuous regardless of

the variation of soil types.  However, the depth, h, of the deflected portion of the pile is

controlled by the stability analysis of the pile under the conditions of soil-pile interaction.  The

effects of the soil and pile properties are associated with the soil reaction along the pile by the

2
 + 45 = m

m

ϕβ                       (5-3)
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Young's modulus of the soil, the stress level in the soil, the pile deflection, and the modulus of

subgrade reaction between the pile segment and each soil sublayer.  To account for the

interaction between the soil and the pile, the deflected part of the pile is considered to respond as

a continuous beam loaded with different short segments of uniform load and supported by

nonlinear elastic supports along soil sublayers, as shown in Fig. 5-8.  At the same time, the point

of zero deflection (Xo in Fig. 5-5) for a pile in a particular layered soil varies according to the

applied load and the soil strain level.

The SW model in layered soil provides a means for distinguishing layers of different soil types

as well as sublayers within each layer where conditions (ε50, SL, ϕm) vary even though the soil

and its properties (γ, e or Dr, ϕ , etc.) remain the same.  As shown in Fig. 5-9 , there may be

different soil layers and a transition in wedge shape from one layer to the next, with all

components of the compound wedge having in common the same depth h.  In fact, there may be

a continuous change over a given sublayer;  but the values of stress level (SL) and mobilized

friction angle (ϕm) at the middle of each sublayer of height, Hi, are treated as the values for the

entire sublayer.

As shown in Fig. 5-9, the geometry of the compound passive wedge depends on the properties

and the number of soil types in the soil profile, and the global equilibrium between the soil layers

and the loaded pile.  An iterative process is performed to satisfy the equilibrium between the

mobilized geometry of the passive wedge of the layered soil and the deflected pattern of the pile

for any level of loading.

While the shape of the wedge in any soil layer depends upon the properties of that layer and,

therefore, satisfies the nature of a Winkler foundation of independent “soil” springs in BEF

analysis, realize that there is forced interdependence given that all components of the compound

wedge have the same depth (h) in common.  Therefore, the mobilized depth (h) of the compound

wedge at any time is a function of the various soils (and their stress levels), the bending stiffness

(EI), and head fixity conditions (fixed, free, or other) of the pile.  In fact, the developing depth of

the compound wedge can be thought of as a retaining wall of changing height, h.  Therefore, the

resultant “soil” reaction, p, from any soil layer is really a “soil-pile” reaction that depends upon
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the neighboring soil layers and the pile properties as they, in turn, influence the current depth, h.

In other words, the p-y response of a given soil layer is not unique. The governing equations of

the mobilized passive wedge shape are applied within each one- or two-foot sublayer i (of a

given soil layer I) and can be written as follows:

( ) ( )
2

  
 - 45 =  m i

m i

ϕ
Θ        (5-6)

( ) ( )
2

 + 45 =   m i
m i

ϕ
β  (5-7)

( ) ( ) ( )        2 ) x - h ( + D =  BC m im iii
ϕβ tantan                                                     (5-8)

where h symbolizes the entire depth of the compound passive wedge in front of the pile and xi

represents the depth from the top of the pile or compound passive wedge to the middle of the

sublayer under consideration.  Equations 5-6 through 5-8 are applied at the middle of each

sublayer.  In the case of short and intermediate shafts, xi is measured downward from the point of

zero crossing and replaces the term (h - xi) in Eqn 5-8, as shown in Fig. 5-6, for analysis of the

lower wedge.

5.5 SOIL STRESS-STRAIN RELATIONSHIP

The horizontal strain (ε) in the soil in the passive wedge in front of the pile is the predominant

parameter in the SW model; hence, the name “strain wedge”.  Consequently, the horizontal stress

change (∆σh) is constant across the width of the rectangle BCLM (of face width BC of the

passive wedge ), as shown in Fig. 5-4.  The stress-strain relationship is defined based on the

results of the isotropically consolidated drained (sand) or undrained (clay) triaxial test.  These

properties are summarized as follows:

• The major principle stress change (∆σh) in the wedge is in the direction of pile

movement, and it is equivalent to the deviatoric stress in the triaxial test as shown in Fig.

5-4 (assuming that the horizontal direction in the field is taken as the axial direction in the

triaxial test).

• The vertical stress change (∆σv) and the perpendicular horizontal stress change (∆σph)

equal zero, corresponding to the standard triaxial compression test where deviatoric stress
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is increased while confining pressure remains constant.

• The initial horizontal effective stress is taken as

σσσ vovoho  =  K = 

where K=1 due to pile installation effects. Therefore, the isotropic confining pressure in

the triaxial test is taken as the vertical effective stress (σvo) at the associated depth.

• The horizontal stress change in the direction of pile movement is related to the current

level of horizontal strain (ε) and the associated Young's modulus in the soil, as are the

deviatoric stress and the axial strain, to the secant Young’s modulus (E = ∆σh/ε) in the

triaxial test.

• Both the vertical strain (εv ) and the horizontal strain perpendicular to pile movement (εph)

are equal and are given as

εv = εph = -ν ε

where ν is the Poisson’s ratio of the soil.

It can be demonstrated from a Mohr’s circle of soil strain, as shown in Fig. 5-10, that shear

strain, γ, is defined as

( ) ( ) ΘΘ mmv  2    + 1  
2
1

 =  2    -   
2
1

 = 
2

sinsin νεεεγ
        (5-9)

The corresponding stress level (SL) in sand (see Fig. 5-11) is

( )
( ) 1 -   + 45  

1 -   + 45  
 =  = SL

2
m

2

hf

h

2/tan

2/tan
ϕ
ϕ

σ
σ

∆
∆

                                                                      (5-10)

where the horizontal stress change at failure (or the deviatoric stress at failure in the triaxial test)

is













∆  1 -  

2
 + 45    = 2

vohf
ϕ

σσ tan  (5-11)
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In clay,

S 2 =         ;  
 
 

 = SL uhf
hf

h σ
σ
σ ∆

∆
∆

 (5.12)

where Su represents the undrained shear strength which may vary with depth.  Determination of

the values of SL and ϕm in clay requires the involvement of an effective stress analysis which is

presented later in this chapter.

The relationships above show clearly that the passive wedge response and configuration change

with the change of the mobilized friction angle (ϕm) or stress level (SL) in the soil.  Such

behavior provides the flexibility and the accuracy for the strain wedge model to accommodate

both small and large strain cases.  The above equations are applied for each soil sublayer along

the shaft in order to evaluate the varying stress level in the soil and the geometry of the passive

wedges.

A power function stress-strain relationship is employed in SW model analysis for both sand and

clay soils.  It reflects the nonlinear variation in stress level (SL) with axial strain (ε) for the

condition of constant confining pressure.  To be applicable over the entire range of soil strain, it

takes on a form that varies in stages as shown in Fig. 5-12.  The advantage of this technique is

that it allows the three stages of horizontal stress, described in the next section, to occur

simultaneously in different sublayers within the passive wedge.

5.5.1 Horizontal Stress Level (SL)

Stage I  (εε  ≤≤  εε 50% )

The relationship between stress level and strain at each sublayer (i) in the first stage is assessed

using the following equation,

( ) ) SL 3.707- (  
  

 
 = SL i

50 i

i
i exp

ε
ελ                     (5.13)

where 3.707 and λ ( λ= 3.19) represent the fitting parameters of the power function relationship,

and ε50 symbolizes the soil strain at 50 percent stress level at the associated confining pressure.
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Stage II  ( εε 50%   ≤≤  εε  ≤≤  εε 80 %  )

In the second stage of the stress-strain relationship, Eqn. 5.13 is still applicable.  However, the

value of the fitting parameter λ is taken to vary in a linear manner with SL from 3.19 at the 50

percent stress level to 2.14 at the 80 percent stress level as shown in Fig. 5-12b.

Stage III ( εε  ≥≥  εε 80% )

This stage represents the final loading zone which extends from 80 percent to 100 percent stress

level.  The following equation is used to assess the stress-strain relationship in this range,

( ) 0.80  SL           
 q +  m 

 100
 + 0.2    = SL i

ii

i
i ≥








;lnexp

ε
ε

 (5-14)

where m=59.0 and q=95.4 ε50  are the required values of the fitting parameters.

The three stages mentioned above are developed based on unpublished experimental results

(Norris 1977).  In addition, the continuity of the stress-strain relationship is maintained along the

SL-ε curve at the merging points between the mentioned stages.

As shown in Fig. 5-13, if ε50 of the soil is constant with depth (x), then, for a given horizontal

strain (ε), SL from Eqns 5-13 or 5-14 will be constant with x.  On the other hand, since strength,

∆σhf, varies with depth (e.g., see Eqns. 5-11 and 5-12), ∆σh (= SL ∆σhf ) will vary in a like

fashion.  However, ε50 is affected by confining pressure (σvo) in sand and Su in clay.  Therefore,

SL for a given ε will vary somewhat with depth.

The Young’s modulus of the soil from both the shear loading phase of the triaxial test and the

strain wedge model is

( ) ( )
ε
σ

ε
σ

 

   SL = 
 

  
 = E

hf iih i
i

∆∆
 (5.15)
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It can be seen from the previous equations that stress level, strain and Young's modulus at each

sublayer (i) depend on each other, which results in the need for an iterative solution technique to

satisfy the equilibrium between the three variables.

5.6 SHEAR STRESS ALONG THE PILE SIDES (SLt)

Shear stress (τ) along the pile sides in the SW model (see Fig. 5-4) is defined according to the

soil type (sand or clay).

5.6.1 Pile Side Shear in Sand

In the case of sand, the shear stress along the pile sides depends on the effective stress (σvo) at the

depth in question and the mobilized angle of friction between the sand and the pile (ϕs).  The

mobilized side shear depends on the stress level and is given by the following equation,

( ) ( ) ( )    2 =            where          ;    ) ( = m is is iivoi ϕϕϕστ tantantan  (5-16)

In Eqn. 5-16, note that mobilized side shear angle, tanϕs, is taken to develop at twice the rate of

the mobilized friction angle (tanϕm) in the mobilized wedge.  Of course, ϕs is limited to the fully

developed friction angle (ϕ) of the soil.

5.6.2 Pile Side Shear Stress in Clay

The shear stress along the pile sides in clay depends on the clay’s undrained shear strength.  The

stress level of shear along the pile sides (SLt) differs from that in the wedge in front of the pile.

The side shear stress level is function of the shear movement, equal to the pile deflection (y) at

depth x from the ground surface.  This implies a connection between the stress level (SL) in the

wedge and the pile side shear stress level (SLt).  Using the Coyle-Reese (1966) “t-z” shear stress

transfer curves (Fig. 5-14), values for SLt  can be determined.  The shear stress transfer curves

represent the relationship between the shear stress level experienced by a one-foot diameter pile

embedded in clay with a peak undrained strength, Su, and side resistance, τult (equal to ζ times

the adhesional strength αSu), for shear movement, y.  The shear stress load transfer curves of

Coyle-Reese can be normalized by dividing curve A (0 < x < 3 m) by ζ = 0.53, curve B (3 < x <
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6 m) by ζ = 0.85, and curve C ( x > 6 m) by ζ = 1.0.  These three values of normalization (0.53,

0.85, 1.0) represent the peaks of the curves A, B, and C, respectively, in Fig. 5-15a.  Figure 5-

15b shows the resultant normalized curves.  Knowing pile deflection (y), one can assess the

value of the mobilized pile side shear stress (τ) as

( ) ( )    SL  = ult it ii ττ  (5-17)

where

) S   = )  ( iuiult αζτ (  (5-18)

and α indicates the adhesion value after Tomlinson (1957).

The normalized shear stress load transfer curves can be represented by the following equations.

For the normalized curves A (x < 3 m) and B (3 < x < 6 m),

D y 40.5 - Dy  12.9 = SL 22
t  (5-19)

For the normalized curve C (x > 6 m)

D y 255 - Dy  32.3 = SL 22
t (5-20)

where y is in cm and D in m.

From the discussion above, it is obvious that SLt varies nonlinearly with the pile deflection, y, at

a given soil depth, x.  Also, SLt changes nonlinearly with soil depth for a given value of soil

displacement/strain (see Fig. 5-15).  These concepts are employed in each sublayer of clay.

5.7 SOIL PROPERTY CHARACTERIZATION IN THE STRAIN WEDGE MODEL

One of the main advantages of the SW model approach is the simplicity of the required soil

properties necessary to analyze the problem of a laterally loaded pile.  The properties required

represent the basic and the most common properties of soil, such as the effective unit weight and

the angle of internal friction or undrained strength.
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The soil profile is divided into one or two foot sublayers, and each sublayer is treated as an

independent entity with its own properties.  In this fashion, the variation in soil properties or

response (such as ε50 and ϕ in the case of sand, or Su and   ϕ in the case of clay) at each sublayer

of soil can be explored.  It is obvious that soil properties should not be averaged at the midheight

of the passive wedge in front of the pile for a uniform soil profile (as in the earlier work of Norris

1986), or averaged for all sublayers of a single uniform soil layer of a multiple layer soil profile.

5.7.1 Propert ies Employed for Sand Soil

• Effective unit weight (total above water table, buoyant below), γ

• Void ratio, e, or relative density, Dr

• Angle of internal friction, ϕ

• Soil strain at 50% stress level, ε50

While standard subsurface exploration techniques and available correlations may be used to

evaluate or estimate γ , e or Dr, and ϕ, some guidance may be required to assess ε50.

The ε50 represents the axial strain (ε1 ) at a stress level equal to 50 percent in the ε1-SL

relationship that would result from a standard drained (CD) triaxial test.  The confining

(consolidation) pressure for such tests should reflect the effective overburden pressure (σvo) at

the depth (x) of interest.  The ε50 changes from one sand to another and also changes with density

state.  In order to obtain ε50 for a particular sand, one can use the group of curves shown in Fig.

5-16 (Norris 1986) which show a variation based upon the uniformity coefficient, Cu, and void

ratio, e.  These curves have been assessed from sand samples tested with “frictionless” ends in

CD tests at a confining pressure equal to 42.5 kPa (Norris 1977).  Since the confining pressure

changes with soil depth, ε50, as obtained from Fig. 5-16, should be modified to match the existing

pressure as follows:

( ) ( )







42.5

  
 )  ( =   vo i

0.2

42.55050 i
σεε  (5-21)
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( ) ( ) 













∆  1 -  

2
 + 45      =   i2

vo ihf i

ϕ
σσ tan  (5-22)

where σvo should be in kPa.

5.7.2 The Properties Employed for Clay

• Effective unit weight γ

• Plasticity index, PI

• Effective angle of friction, ϕ

• Undrained shear strength, Su

• Soil strain at 50% stress level, ε50

Plasticity index, PI, and undrained shear strength, Su, are considered the governing properties

because the effective angle of internal friction, ϕ,  can be estimated from the PI based on Fig. 5-

17.  The ε50 from an undrained triaxial test (UU at depth x or CU with σ3 =σvo) can be

estimated based on Su as indicated in Fig. 5-18.

An effective stress (ES) analysis is employed  with clay soil as well as with sand soil. The reason

behind using the ES analysis with clay, which includes the development of excess porewater

pressure with undrained loading, is to define the three-dimensional strain wedge geometry based

upon the more appropriate effective stress friction angle,ϕ.  The relationship between the

normally consolidated clay undrained shear strength, Su, and σvo is taken as

σvou  0.33 = S  (5-23)

assuming that Su is the equivalent undrained standard triaxial test strength.  The effective stress

analysis relies upon the evaluation of the developing excess porewater pressure based upon

Skempton's equation (1954), i.e.

( )[ ]    -   A +   B = u 31u3 σσσ ∆∆∆∆  (5-24)
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where B equals 1 for saturated soil.  Accordingly,

( )   -   A +  = u 31u3 σσσ ∆∆∆∆  (5-25)

Note that ∆σ3 =0 both in the shear phase of the triaxial test and in the strain wedge.  Therefore,

the mobilized excess porewater pressure is

σ1u A = u ∆∆  (5-26)

where ∆σ1  represents the deviatoric stress change in the triaxial test and ∆σh in the field, i.e.

σhu A = u ∆∆ (5-27)

Therefore, using the previous relationships, the Skempton equation can be rewritten for any

sublayer (i) as follows:

) S ( 2 SL ) A ( = )  ( SL ) A ( = ) u ( iuiiuihfiiui σ∆∆ (5-28)

The initial value of parameter Au is 0.333 and occurs at very small strain for elastic soil response.

In addition, the value of parameter Auf that occurs at failure at any sublayer (i) is given by the

following relationship











 

 
1

 - 
)  (

)S(1
 + 1  

2
1

 = ) A (
iivo

iu
iuf

ϕσ sin

/
(5-29)

after Wu (1966) as indicated in Fig. 5-19.

In Eqn. 5.29, ϕ symbolizes the effective stress angle of internal friction; and, based on Eqn. 5-

23, Su/σvo equals 0.33.  However, Au is taken to change with stress level in a linear fashion as

[ ] 0.333 - ) A (  SL + 0.333 = ) A ( iufiiu (5-30)
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By evaluating the value of Au, one can effectively calculate the excess porewater pressure, and

then  can determine the value of the effective horizontal stress, (σ–vo + ∆σh - ∆u), and the effective

confining pressure, (σ–vo - ∆u) at each sublayer, as shown in Fig. 5-19.  Note that the mobilized

effective stress friction angle, ϕ–m, can be obtained from the following relationship.

( )
( )u - 

u -  + 
 = 

2

)  (
 + 45

vo i

hvo iim2

∆
∆∆








σ
σσϕ

tan (5-31)

The targeted values of ϕmi and SLi in a clay sublayer and at a particular level of strain (ε) can be

obtained by using an iterative solution that includes Eqns 5-12 through 5-14, and 5-28 through 5-

31.

5.8 SOIL-PILE INTERACTION IN THE STRAIN WEDGE MODEL

The strain wedge model relies on calculating the modulus of subgrade reaction, Es, which

reflects the soil-pile interaction at any level of soil strain during pile loading.  Es also represents

the secant slope at any point on the p-y curve, i.e.

y
p

 = E s (5-32)

Note that p represents the force per unit length of the pile or the BEF soil-pile reaction, and y

symbolizes the pile deflection at that soil depth.  In the SW model, Es is related to the soil’s

Young's modulus, E, by two linking parameters, A and ψs.  It should be mentioned here that the

SW model establishes its own Es  from the Young's modulus of the strained soil, and therefore,

one can assess the p-y curve using the strain wedge model analysis.  Therefore, Es should first be

calculated using the strain wedge model analysis to identify the p and y values.

Corresponding to the horizontal slice (a soil sublayer) of the passive wedge at depth x (see Figs.

5-2 and 5-4), the horizontal equilibrium of horizontal and shear stresses is expressed as

( ) S D  2 + S BC    = p 2i1ih ii τσ∆ (5-33)
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where S1 and S2 equal to 0.75 and 0.5, respectively, for a circular pile cross section, and equal to

1.0 each for a square pile (Briaud et al. 1984).  Alternatively, one can write the above equation as

follows:

( ) ( )  
S  2

 + 
D

S BC = 
  

D  p
 = A

h i

2i1i

h i

i
i

σ
τ

σ ∆∆
/

(5-34)

where A symbolizes the ratio between the equivalent pile face stress, p/D, and the horizontal

stress change, ∆σh, in the soil.  (In essence, it is the multiplier that, when taken times the

horizontal stress change, gives the equivalent face stress.)  From a different perspective, it

represents a normalized width (that includes side shear and shape effects) that, when multiplied

by ∆σh yields p/D.  By combining the equations of the passive wedge geometry and the stress

level with the above relationship, one finds that

( ) ( ) ( ) ( )
( )  sandin       

  

      S 2
 +  

D

    2  x - h 
 + 1  S = A

h i

s ivo i2mm ii
1i

σ

φσϕβ
∆




 tantantan
(5-35)

( ) ( ) ( )
clay in                

SL

 SL  S +  
D

    2  x - h 
 + 1  S = A

i

t i2mm ii
1i 







 ϕβ tantan
(5-36)

Here the parameter A is a function of pile and wedge dimensions, applied stresses, and soil

properties.  However, given that ∆σh = Eε in Eqn. 2.33,

εσ  E D A = )  ( D A = p iiihii ∆ (5-37)

For the upper passive wedge, ε represents the uniform soil strain and is replaced by εx for soil

sublayers of the lower passive wedge.  The second linking parameter, Ψs, relates the soil strain in

the SW model to the linearized pile deflection angle, δ.  Referring to the normalized pile

deflection shape shown in Figs. 5-3 and 5-5

2
 = 
γδ (5-38)
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Θm 2  
2

 = 
2

sinmaxγγ
(5-39)

and

( )
2

   + 1 
 = 

2
 - 

 = 
2

v ενεεγmax (5-40)

where γ denotes the shear strain in the developing passive wedge.  Using Eqns. 5-39 and 5.40,

Eqn. 5-38 can be rewritten as

( )
2

 2    + 1  
 = mΘsinνεδ (5-41)

Based on Eqn. 5-41, the relationship between ε and δ can expressed as

δ
ε

 = Ψ (5-42)

or

( ) Θ
Ψ

m 2    + 1 
2

 = 
sinν

(5-43)

The parameter ψ varies with the Poisson's ratio of the soil and the soil's mobilized angle of

internal friction (ϕm) and the mobilized passive wedge angle (Θm).

Poisson's ratio for sand can vary from 0.1 at a very small strain to 0.5 or lager (due to dilatancy)

at failure, while the base angle, Θm, can vary between 45o (for ϕm = 0 at ε= 0) and 25o (for, say,

ϕm = 40o at failure), respectively. For this range in variation for ν and ϕm, the parameter Ψ for

sand varies between 1.81 and 1.74 with an average value of 1.77.  In clay soil, Poisson's ratio is

assumed to be 0.5 (undrained behavior) and the value of the passive wedge base angle, Θm, can

vary between 45o (for ϕm  = 0 at ε = 0) and 32.5o (for, say, ϕm = 25o at failure).  Therefore, the

value of the parameter ψ will vary from 1.47 to 1.33, with an average value of 1.4.

It is clear from the equations above that employing the multi- sublayer technique greatly

influences the values of soil-pile interaction as characterized by the parameter, Ai, which is
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affected by the changing effective stress and soil strength from one sublayer to another.  The

final form of the modulus of subgrade reaction can be expressed as

( ) ( ) ( ) E  D 
 x - h 

A = 
 x - h  

E  D A = 
y

p
 =  E i

i

i

i

ii

i

i
s i Ψ

δ
ε

(5-44)

It should be mentioned that the SW model develops its own set of non-unique p-y curves which

are function of both soil and pile properties, and are affected by soil continuity (layering) as

presented by Ashour et al. (1996).  For the lower passive wedge, (h – xi) will be replaced by xi

that is measured downward from the point of zero crossing (Fig. 5-6).

5.9 PILE HEAD DEFLECTION

As mentioned previously, the deflection pattern of the pile in the SW model is continuous and

linear.  Based on this concept, pile deflection can be assessed using a simplified technique which

provides an estimation for the linearized pile deflection, especially yo at the pile head.  By using

the multi-sublayer technique, the deflection of the pile can be calculated starting with the base of

the mobilized passive wedge and moving upward along the pile, accumulating the deflection

values at each sublayer as shown in the following relationships and Fig. 5-20.

s

iiii  H =  H = y
Ψ
ε

δ (5-45)

n to 1 =i                    y  = y io Σ (5-46)

where the ψs value changes according to the soil type (sand or clay), and Hi indicates the

thickness of sublayer i and n symbolizes the current number of sublayers in the mobilized

passive wedge.

The main point of interest is the pile head deflection which is a function of not only the soil

strain but also of the depth of the compound passive wedge that varies with soil and pile

properties and the level of soil strain.

5.10 ULTIMATE RESISTANCE CRITERIA IN STRAIN WEDGE MODEL
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The mobilized passive wedge in front of a laterally loaded pile is limited by certain constraint

criteria in the SW model analysis.  Those criteria differ from one soil to another and are applied

to each sublayer.  Ultimate resistance criteria govern the shape and the load capacity of the

wedge in any sublayer in SW model analysis.  The progressive development of the ultimate

resistance with depth is difficult to implement without employing the multi- sublayer technique.

5.10.1 Ultimate Resistance Criterion of Sand Soil

The mobilization of the passive wedge in sand soil depends on the horizontal stress level, SL,

and the pile side shear resistance, τ.  The side shear stress is a function of the mobilized side

shear friction angle, ϕs, as mentioned previously, and reaches its ultimate value (ϕs = ϕ) earlier

than the mobilized friction angle, ϕm, in the wedge (i.e. SLt ≥ SL).  This causes a decrease in the

rate of growth of sand resistance and the fanning of the passive wedge as characterized by the

second term in Eqns 5-33 and 5-35, respectively.

Once the stress level in the soil of a sublayer of the wedge reaches unity (SLi = 1), the stress

change and wedge fan angle in that sublayer cease to grow.  However, the width BC of the face

of the wedge can continue to increase as long as ε (and, therefore, h in Eqn. 5-8) increases.

Consequently, soil-pile resistance, p, will continue to grow more slowly until a condition of

initial soil failure (SLi = 1) develops in that sublayer.  At this instance, p = pult where pult in sand,

given as

( ) ( ) ( ) S D    2 + S BC    =  p 2f i1ihf iult i τσ∆ (5.47)

pult is “a temporary” ultimate condition, i.e. the fanning angle of the sublayer is fixed and equal

to ϕi, but the depth of the passive wedge and, hence, BC continue to grow.  The formulation

above reflects that the near-surface “failure” wedge does not stop growing when all such

sublayers reach their ultimate resistance at SL = 1 because the value of h at this time is not

limited.  Additional load applied at the pile head will merely cause the point at zero deflection

and, therefore, h to move down the pile.  More soil at full strength (SL = 1) will be mobilized to
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the deepening wedge as BC, therefore, pult will increase until either flow around failure or a

plastic hinge in the pile occurs.

Recognize that flow around failure occurs in any sublayer when it is easier for the sand at that

depth to flow around the pile in a local bearing capacity failure than for additional sand to be

brought to failure and added to the already developed wedge.  However, the value at which flow

failure occurs [Ai = (Ault)i , (pult)i = (∆σhf)i (Ault)i D] in sand is so large that it is not discussed

here.  Alternatively, a plastic hinge can develop in the pile when the pile material reaches its

ultimate resistance at a time when SLi ≤ 1 and Ai < (Ault)i.  In this case, h becomes fixed, and BCi

and pi will be limited when SLi becomes equal to 1.

5.10.2 Ultimate Resistance Criterion of Clay Soil

The situation in clay soil differs from that in sand and is given by Gowda (1991) as a function of

the undrained strength (Su)i of the clay sublayer.

( ) ( ) ( ) S D  S  2 + S D  S 10 =  p 2u i1u iult i (5-48)

Consequently,

( )
( )

( )
( )

( )           S + S5 = 
 S  2 D

 p 
 = 

   
D

 p 

 =  A 21
u i

ult i

hf i

ult i

ult i σ∆
(5-49)

Ault indicates the limited development of the sublayer wedge geometry for eventual development

of flow around failure (SLi = 1) and, consequently, the maximum fanning angle in that sublayer

becomes fixed, possibly at a value ϕm ≤ ϕ.  If a plastic hinge develops in the pile at SLi less

than 1, then h will be limited, but BC, and pi will continue to grow until Ai is equal to Ault or pi is

equal to (pult)i.
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5.11 VERTICAL SIDE SHEAR RESISTANCE

As seen in Fig. 5-21, the vertical side shear stress distribution around the shaft cross section is

assumed to follow a cosine function.  It is assumed that there is no contact (active pressure) on

the backside of the shaft due to the lateral deflection.  The peak (q) of side shear stress develops

at angle θ = 0 and decreases to zero at angle θ = 90o.  The total vertical side shear force (Vv)

induced along a unit length of the shaft is expressed as

qDrqdrqVv === ∫ 2/
0

2/

0
)sin(2cos2 ππ

θθθ (5-50)

and the induced moment (Mx-x) per unit length of the shaft is given as
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(5-51)

Mx-x represents the term MR in Eqn. 5-1.

5.12 SHAFT BASE RESISTANCE

The soil shear resistance at the base of the shaft (Vb) that is shown in Fig. 5-1 is a function of the

soil shear stress (τb) induced at the contact surface between the soil and shaft base.  The shear

stress (τb) varies with lateral deflection of the shaft base and the axial load delivered at the shaft

base.  Based on the failure mechanism at the shaft base for sand and clay that are presented in

Chapter 3 and 4, Fig. 5-22 shows the shear tress (τb) that develops at the shaft base embedded in

sand or clay soil.  Unlike the clay case, the ultimate shear resistance at the base of the shaft

increases with the axial load carried by the shaft base (Figs. 4-1 and 5-22).
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The shear resistance at the shaft base can be determined as follows,

1. Using the lateral deflection at the shaft base (yb) that is obtained from the lateral shaft

analysis with no shaft base resistance, the soil shear strain at the base (γb) is calculated as,

D
yb

b 2
=γ (5-52)

where D is the shaft diameter, and the effective depth of the shear deformation is

assumed to be equal to 2D

2. In the first step of analysis, assume the normal strain (εb) equal to the shear strain (γb).

Based on the normal stress strain relationship presented in Section 5.5.1, the stress level

(SL) can be evaluated and the associated Poisson’s ratio (ν) is calculated as follows,

SL4.01.0 +=ν (5-53)

It should be noted the ∆σhf used in Eqns. 5-10 through 5-12 is constant with clay (∆σhf =

2Su) and varies with the load carried by the shaft base in the case of sand (Figs. 4-1 and

5-22), i.e.














∆  1 -  

2
 + 45    = 2

IVhf
ϕ

σσ tan)( 3 (5-54)

In sand soil, the increase of the shaft base load (Fb = 0.6 qnet Ab = σd Ab = SL ∆σhf Ab)

results in the increase of the accompanying confining pressure IV )( 3σ .

3. The induced normal strain (εb) is recalculated as follows,

)1( ν
γε
+

= b
b (5-55)

4. Repeat steps 2 and 3 to refine the value of εb by averaging the new and old values of εb

until reaching the desired convergence.

5. Compute the associated soil shear stress that develops on the shaft base (τb) as follows:
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ub SSL=τ (Clay) (5-56a)

hfb SL στ ∆= 5.0 (Sand) (5-56b)

bbb AV τ= (5-57)

where Fb and Vb are the axial load (as calculated in Chapter 4) and the shear resistance

carried by the shaft base.

6. Analyze the laterally loaded shaft as a Beam on Elastic Foundations (Section 5-13)

considering the effect of the base resistance.  The base shear resistance is evaluated in

each trial according to the lateral deflection induced at the shaft base.

5.13 STABILITY ANALYSIS IN THE STRAIN WEDGE MODEL

The objective of the SW model is to establish the soil response as well as model the soil-pile

interaction through the modulus of subgrade reaction, Es.  The shape and the dimensions of the

passive wedge in front of the pile basically depend on two types of stability which are the local

stability of the soil sublayer and the global stability of the pile and the passive wedge.  However,

the global stability of the passive wedge depends, in turn, on the local stability of the soil

sublayers.

5.13.1 Local Stability of a Soil Sublayer in the Strain Wedge Model

The local stability analysis in the strain wedge model satisfies equilibrium and compatibility

among the pile segment deflection, soil strain, and soil resistance for the soil sublayer under

consideration.  Such analysis allows the correct development of the actual horizontal stress

change, ∆σh , pile side shear stress, τ, and soil-pile reaction, p, associated with that soil sublayer

(see Figs. 5-2 and 5-4).  It is obvious that the key parameters of local stability analysis are soil

strain, soil properties, and pile properties.

5.13.2 Global Stability in the Strain Wedge Model

The global stability, as analyzed by the strain wedge model, satisfies the general compatibility

among soil reaction, pile deformations, and pile stiffness along the entire depth of the developing

passive wedge in front of the pile.  Therefore, the depth of the passive wedge depends on the
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global equilibrium between the loaded pile and the developed passive wedge.  This requires a

solution for Eqn. 5-1.

The global stability is an iterative beam on elastic foundation (BEF) problem that determines the

correct dimensions of the passive wedge, the corresponding straining actions (deflection, slope,

moment, and shear) in the pile, and the external loads on the pile.  Satisfying global stability

conditions is the purpose of linking the three-dimensional strain wedge model to the BEF

approach.  The major parameters in the global pile stability problem are pile stiffness, EI, and the

modulus of subgrade reaction profile, Es, as determined from local stability in the strain wedge

analysis.  Since these parameters are determined for the applied soil strain, the stability problem

is no longer a soil interaction problem but a one-dimensional BEF problem.  Any available

numerical technique, such as the finite element or the finite difference method, can be employed

to solve the global stability problem.  The modeled problem, shown in Fig. 5-8c, is a BEF and

can be solved to identify the depth, Xo, of zero pile deflection.

5.14 SUMMARY

The SW model approach presented here provides an effective method for solving the problem of

a laterally loaded pile/shaft in layered soil.  This approach assesses its own nonlinear variation in

modulus of subgrade reaction or p-y curves.  The SW model allows the assessment of the

nonlinear p-y curve response of a laterally loaded pile based on the envisioned relationship

between the three-dimensional response of a flexible pile in the soil to its one-dimensional beam

on elastic foundation parameters.  In addition, the SW model employs stress-strain-strength

behavior of the soil as established from the triaxial test in an effective stress analysis to evaluate

mobilized soil behavior.

The SW model accounts for the vertical side shear resistance that develops effectively with large

diameter shafts.  Such resistance enhances the performance of the large diameter shafts and

increases with progressive lateral deflection.  The evaluation of the vertical side shear resistance

is based on the assessed t-z curve and affects the shape of the predicted p-y curve.  The

formulations of the t-z curve presented in Chapters 3 and 4 are employed in the SW model

analysis and coupled with the shaft deformations.
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Compared to empirically based approaches which rely upon a limited number of field tests, the

SW approach depends on well known or accepted principles of soil mechanics (the stress-strain-

strength relationship) in conjunction with effective stress analysis.  Moreover, the required

parameters to solve the problem of the laterally loaded pile are a function of basic soil properties

that are typically available to the designer.
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Fig. 5-1   Characterization of Large Diameter Long, Intermediate or Short Shafts

In Terms of a) Forces and b) Nonlinear Springs
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Fig. 5-2 The Basic Strain Wedge in Uniform Soil



5-29

Fig. 5-3 Deflection Pattern of a Laterally Loaded Long

     Shaft/Pile and the Associated Strain Wedge
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Fig. 5-4   Characterization and equilibrium of the SW model
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Fig. 5-5   Deflection Patterns of Long, Intermediate and Short Shafts
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Fig. 5-6   Developed Passive Wedges with Short and Intermediate Shafts
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Fig. 5-7 The Linearized Deflection Pattern of a Pile/shaft Embedded in Soil Using the
Multi Sublayer Strain Wedge Model
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Fig. 5-8 Soil-Pile Interaction in the Multi-Sublayer Technique
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Fig. 5-9 The Proposed Geometry of the Compound Passive Wedge
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Fig. 5-10 Distortion of the Wedge a), The Associated Mohr Circle of Strain  b), and
the Relationship Between Pile Deflection and Wedge Distortion c)
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Fig. 5-11 Relationship Between Horizontal Stress Change, Stress Level,

and Mobilized Friction Angle
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Fig. 5-12 The Developed Stress-Strain Relationship in Soil
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Fig. 5-13 The Nonlinear Variation of Stress Level Along

the Depth of Soil at Constant Strain



5-38

Fig. 5-14 The Employed Side Shear Stress-Displacement Curve in Clay
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Fig. 5-15. The Nonlinear Variation of Shear Stress Level (SLt) with depth in Clay



5-40

Fig. 5-16 Relationship Between εε 50, Uniformity Coefficient (Cu)
     and Void Ratio (e) (Norris 1986)

0 0.25 0.5 0.75 1 1.25 1.5

Void Ratio, e

0

0.25

0.5

0.75

1

1.25

1.5

g 5
0 (

%
)

Uniformity Coefficient, Cu

1.182610



5-41

Fig. 5-17 Relationship Between Plasticity Index (PI) and Effective Stress Friction

Angle (ϕϕ ) (US Army Corps of Engineers 1996)
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Fig. 5-18 Relationship Between �50 and Undrained Shear Strength , Su

(Evans and Duncan 1982)
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Fig. 5-19 Relationship Between Effective Stress and Total Stress Conditions
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Fig. 5-20   The Assembling of Pile Head Deflection
Using the Multi-Sublayer Technique
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Fig. 5-21   Vertical Side Shear Stress Distribution on the Shaft Cross Section
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Fig. 5-22   Mobilized Shear Resistance at the Shaft Base in Sand and Clay
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